

Developing Plug-ins for

Foxit Reader/PhantomPDF

Foxit PhantomPDF Plug-in SDK

 Version 1.0

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 2

Contents

Prerequisites ... 4

Developer Audience .. 4

Supported Environments ... 4

MFC .. 4

Additional Documentation ... 4

Overview .. 5

Purpose ... 5

What can Foxit Reader/PhantomPDF Plugins do? .. 5

Customize the Foxit Reader/PhantomPDF User Interface................................. 5

Manipulate PDF Documents .. 5

Plugin Architecture ... 5

Foxit Reader/PhantomPDF Core API .. 7

“Hello World” Plugin .. 9

Visual Studio Project Settings .. 9

Compilation Errors with IDEs Older than Visual C++ 6.0 10

Getting Started with the Demo Projects .. 12

Adding Menu Options to the Demo ... 13

Menus that work directly with PDF documents ... 14

Plugin Basics ... 16

Methods Every Plugin Must Have .. 16

Plugin Loading .. 17

Handshaking ... 17

Host Function Tables (HFT) .. 18

Global Core HFT Manager .. 19

Extension HFTs ... 19

Header Files .. 21

Core API Terminology .. 22

Objects .. 22

Methods ... 22

Additional Demos ... 23

Menus .. 23

Menu Objects ... 23

Menu Item Callback Functions ... 24

Menu Sample Project .. 24

Tool Bar .. 27

Tool Bar Objects ... 27

Tool Button Callback Functions .. 28

Toolbar Sample Project.. 28

Documents ... 30

PDF Document Model .. 30

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 3

PDF Document View ... 30

Document Sample Project ... 30

Event Notifications .. 32

Navigation Panel ... 32

Navigation Panel Objects ... 32

Navigation Panel View Sample Project .. 33

Enabling a Foxit Reader/PhantomPDF Plug-in ... 34

Applying for Digital Certificate .. 34

Certifying a Plug-in .. 35

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 4

Prerequisites

Developer Audience

This document is targeted towards C/C++ developers using the SDK to create plugins for

Foxit Reader/Phantom. It assumes the developer is familiar with C/C++ and is an

experienced user of Foxit Reader/Phantom.

Supported Environments

Platform Operating System Compiler

Windows (32-bit) Windows 2000/XP or later Microsoft Visual Studio 6.0 or

later.

MFC

Dynamically linked libraries (DLL) that link to Microsoft Foundation Classes (MFC) need to

use the macro AFX_MANAGE_STATE to switch the MFC module state correctly. This is done

by adding the following line of code to the beginning of functions that are exported from

the DLL:

AFX_MANAGE_STATE(AfxGetStaticModuleState());

If this macro is not used, the plugin resources will fail to load in debug mode. The program

will work until a function return is encountered. The AFX_MANAGE_STATE macro should not

be used in regular DLLs that statically link to MFC or in extension DLLs.

Additional Documentation

Please refer to the Foxit PhantomPDF API Reference for a detailed description of the Foxit

Reader/PhantomPDF Plugin API.

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 5

Overview

Purpose

This document covers how to develop Foxit Reader/Phantom plugins with the SDK. Plugins

allow users to enhance the functionality of Foxit Reader/PhantomPDF. Additional features

that are beyond the basic Foxit Reader/PhantomPDF feature set can be added through

plugins. Developers will learn what a plugin is and how it integrates with Foxit

Reader/PhantomPDF.

What can Foxit Reader/PhantomPDF Plugins

do?

Customize the Foxit Reader/PhantomPDF User

Interface

Developers can modify the Foxit Reader/PhantomPDF user interface through plugins. New

menu items and tool bar buttons can be added to the existing interface. Custom actions

can be programmed for specific user interface commands. Please refer to the “Menu” and

“Toolbar” sample projects for examples of custom user interface changes done through

plugins.

Manipulate PDF Documents

Here are a few PDF manipulations that can be done through plugins,

 Open a PDF document in an external dialog.

 Dynamically add and remove pages from an existing PDF document.

 Edit all of the elements contained in a PDF document.

 Set up security policies to control user permissions for PDF documents.

Please refer to the “Document” and “DRM” sample projects for examples of PDF

manipulations done through plugins.

Plugin Architecture

Foxit Reader/PhantomPDF provides the host environment in which a plugin application

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 6

exists. Foxit Reader/PhantomPDF shares its resources with plugins through the Foxit

Reader/PhantomPDF Core API. The Core API has control over items such as the menu bar,

page view, and PDF document operations. Through these resources, plugins can make

modifications to Foxit Reader/PhantomPDF. The following diagram shows the relationship

between Foxit Reader/PhantomPDF and plugins.

Plug-ins are dynamically-linked extensions to Foxit Reader/PhantomPDF and are written

using the Core API. The Core API is an ANSI C/C++ library. Plugins are dynamically-linked

libraries (DLLs) on the Microsoft Windows platform.

There are two ways to install custom plug-ins for Foxit Reader/PhantomPDF to load it:

1. Place the plug-in in “plugins” directory which is in the same directory of Foxit

Reader/PhantomPDF.

2. Place the plug-in in a specified directory and then create registry entries to associate it.

The format of the registry entries is as follows:

For 64bit Windows, to make your plug-in available for all Windows users, create a registry

key as following:

[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Foxit

Software\PhantomAddins\YourPlgName]

For 32bit Windows, to make your plug-in available for all Windows users, create a

registrykey as following:

[HKEY_LOCAL_MACHINE\SOFTWARE\Foxit Software\PhantomAddins\YourPlgName]

For 64bit Windows and 32bit Windows, to make your plug-in available for current Windows

users, create a registry key as following:

[HKEY_CURRENT_USER\Software\Foxit Software\PhantomAddins\YourPlgName]

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 7

After created the registry key correctly, set the key-value pair to “YourPlgName” key as

following:

"FriendlyName "="YourPluginName"

"Description" = "The description of your plugin"

"PIPath "="The full path of your plug-in"

"LoadBehavior"= “3”

Then Foxit Reader/PhantomPDF must be restarted in order for the plug-ins to take effect.

The number of plug-ins that Foxit Reader/PhantomPDF can load at any specified time is

limited. The host operating system may have a limitation on the total number of Thread

Local Storage (TLS) slots available to a single process. This is a limitation of the

multi-threaded model used by the Win32 API. More available TLS slots on a system

equates to more plug-ins being loaded by Foxit Reader/PhantomPDF. TLS slots are

allocated for each DLL or plugin that is loaded by invoking the Windows LoadLibrary

function. LoadLibrary will fail if all of the TLS slots for a given process are filled.

Additional information about TLS can be found at

http://msdn.microsoft.com/en-us/library/ms686749(VS.85).aspx

Foxit Reader/PhantomPDF Core API

The Foxit Reader/PhantomPDF Core API encapsulates resources (e.g. user interface, basic

libraries, etc.) into three separate layers: Foxit Support layer, Foxit Portable Document layer,

and Foxit Reader/PhantomPDF layer. Each layer provides method calls for developers to

operate on different objects within a PDF document. All of these objects are opaque data

types. The Core API is implemented as a standard ANSI C programming library and is

supported on Windows 32 bit platforms. The diagram below shows how the three layers of

the Core API fit together.

Foxit Reader/PhantomPDF Layer

User interface customizations are done at the Foxit Reader/PhantomPDF (FRD) layer. The

http://msdn.microsoft.com/en-us/library/ms686749(VS.85).aspx

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 8

FRD layer encapsulates the user interface objects used in Foxit Reader/PhantomPDF (e.g.

FR_MenuBar, FR_Menu, FR_PageView, FR_ToolBar). Here are some examples of

application-level tasks that can be done with the FRD layer,

 Add menus, menu commands, and toolbar buttons.

 Open and close files.

 Display simple dialog boxes.

Foxit Portable Document Layer

Modifications to PDF documents are handled in the Foxit Portable Document (FPD) layer.

The FPD layer encapsulates many of the PDF objects used in Foxit Reader/PhantomPDF

(e.g. FPD_Document, FPD_Page, FPD_Annot, FPD_Dictionary). Here are some examples of

PDF modifications that can be done with the FPD layer,

 Create PDF documents.

 Insert pages into an existing PDF document.

 Add annotations.

Plugins can modify almost all of the data inside a PDF file since the FPD layer provides

access to this content.

Foxit Support layer

Data management is handled by the Foxit Support (FS) layer. The FS layer provides

platform-independent data types and methods that support the FRD and FDP layers. The

FS layer encapsulates the basic common objects used by the other two layers (e.g.

FS_Rect, FS_AffineMatrix, FS_PtrArray, FS_ByteArray, FS_ByteString).

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 9

“Hello World” Plugin

In order to cover the basics of plugin development, this manual uses three example demo

projects. The “Starter” demo is a functional skeleton for all plugin applications. The “Menu”

demo adds a menu item to the functional skeleton. The “Document” demo, makes use of

the menu item example and displays “Hello World” on the document. Developers are

encouraged to use the demo projects as a base for Foxit Reader/PhantomPDF plugins.

Please download the demo projects and have them available for viewing while reading

through this guide. This is required for a complete understanding of this section since it

makes multiple references to the demo code. The demo projects are available for

download in Visual C++ 6.0 (.dsw) format, and can be used with any version of Visual C++

6.0 and above.

For help with using Integrated Development Environments (IDEs) other than Visual Studio

for compiling these demos, please contact support@foxitsoftware.com

Visual Studio Project Settings

In order to properly develop and debug any Foxit Reader/PhantomPDF plugin, Visual

Studio must be configured correctly. Below are the default Visual C++ 6.0 project settings

used in the demos.

● Open the “Project Settings” dialog box for the demo project by going to Project >

Settings

● Click on the C/C++ tab and select the Preprocessor category.

● Replace any “_MBCS preprocessor” definition with “UNICODE”, ”_UNICODE”.

● Click on the Link tab and select the General category.

● In the Output File Name text field, enter the full path to your plugin. The plugin path

must match the installation directory of Foxit Reader/PhantomPDF on your system.

The default value is “\Program Files\Foxit Software\Foxit Reader(\Foxit

PhantomPDF)\plugins”. The extension is “.fpi”.

● Click on the Debug tab and select the General category.

● In the Executable for debug session text field enter the full path to the Foxit

Reader.exe/Foxit PhantomPDF.exe that will load the plugins upon startup. Foxit

Reader.exe/Foxit PhantomPDF.exe must be located at the same directory level as the

plugins folder.

● Click OK to apply the new changes and exit the “Project Settings” dialog.

● Go to Debug > Rebuild-All.

● It is now possible to add breakpoints and debug the plugin project like a normal

application. Visual Studio will launch Foxit Reader/PhantomPDF when a debug session

begins.

mailto:support@foxitsoftware.com

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 10

Please note that there are special considerations if the plugin DLL needs to link dynamically

with MFC DLLs, which can be found in the MFC section.

Compilation Errors with IDEs Older than Visual C++ 6.0

Integrated Development Environments (IDEs) later than Microsoft Visual C++ 6.0 may

produce the following compilation errors:

Compilations errors from Visual Studio 2008

To fix these errors, you’ll need to change the compilation options such that Treat

wchar_t as a Built-in Type is set to No. Here are instructions on how to configure this

in Visual Studio 2008,

Go to Project > [project name] properties > Configuration Properites > C/C++ >

Language > and set Treat wchar_t as Built-in Type to No (/Zc:wchar_t-).

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 11

Setting Treat wchar_t as Built-in Type in Visual Studio 2008

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 12

Getting Started with the Demo Projects

This section covers the “Starter” demo, which contains the minimum functionality each

plugin must implement in order to communicate with Foxit Reader/PhantomPDF. The main

files for this demo a “Starter.cpp” and “PIMain.cpp”. All of the other files are auto

generated during the Visual C++ project creation process. Much of the code in

“Starter.cpp” and “PIMain.cpp” is also auto generated, and will be familiar to MFC

application developers.

The relevant section of code starts with the compiler directive extern “C” {…}. Note that

this directive encapsulates several functions, which are listed below.

 PlugInMain

 PISetupSDK

 PIHandshake

 PIExportHFTs

 PIImportReplaceAndRegister

 PIInit

 PIUnload

These functions make up a “C style” interface (hence the compiler directive) that Foxit

Reader/PhantomPDF uses during plugin initialization. Every plugin must maintain this

interface. The initialization procedure, or “handshaking”, is handled by the PlugInMain

function, which is the main entry point of plugin DLLs. The following functions in the

“Starter” demo have default implementations that provide Foxit Reader/PhantomPDF with

pointers to user defined plugin specific functions,

 PlugInMain

 PISetupSDK

 PIHandshake

It is the developer’s responsibility to add custom application logic to these plugin specific

functions. Since the “Starter” plugin serves as a skeleton plugin application, these

functions are left blank. For example, if the “Starter” demo allocated any memory, it would

need to release that memory when the user closes Foxit Reader/PhantomPDF. When Foxit

Reader/PhantomPDF is closed, the PIUnload() function is invoked. The developer would

add code in PIUnload() to de-allocate the memory.

Plug-ins must define a pointer reference to Foxit Reader/PhantomPDF’s Core HFT Manager

and a pointer to receive the plug-in unique ID. Here is the line of code from Starter.cpp

that defines the CORE HFT Manager pointer and the unique ID pointer.

FRCoreHFTMgr *_gpCoreHFTMgr = NULL;

void* _gPID = NULL;

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 13

Adding Menu Options to the Demo

The “Menu” demo covers how to add a new item to an existing Foxit Reader/PhantomPDF

menu. It also shows how to add an entirely new menu to Foxit Reader/PhantomPDF.

The functional plugin menu created by the “Menu” project.

Note that “Menu.cpp” starts with the skeleton application provided by “Starter.cpp” and

adds application specific logic to functions that were left blank by default. The interface

used by Foxit Reader/PhantomPDF to initialize the plugin is the same with the exception of

the PIInit function. This function now implements user defined functionality upon startup

by making calls to AddMenuItemToExistingMenu and AddMenuToMenuBar.

These two functions both work in a similar way.

1. Retrieve the current Foxit Reader/PhantomPDF menu-bar.

2. Retrieve an index, and then select the menu option at that index (add to existing menu

only)

3. Create a new menu item and add an icon if desired, using Plugin SDK defined types.

4. Set menu item attributes such as Title and Description.

5. Set the menu item callbacks to user defined functions (Similar to a message map).

6. Add the menu item to Foxit Reader/PhantomPDF.

These operations are handled by menu specific API functions provided by the Foxit Plugin

SDK (e.g. FRMenuItemSetExecuteProc). The developer is then left to create the callback

function for that particular menu item. Here are the callback functions from the demo,

 OnClick

 IsCheck

 IsEnable

The OnClick callback displays a message box to the user. The IsCheck and IsEnable are

optional callbacks that change the user’s view of the menu item.

The last user defined function in the “Menu” demo is GetBMPFromRes.This function

implements a plugin specific method for retrieving a menu item’s image from a PDF

resource. This allows the SDK user to add images in a non-system specific way. This means

that menu item images do not require full .ico files.

For additional information on the different menu options available through the Foxit Plugin

SDK, please refer to the “Menus” section under Additional Demos.

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 14

Menus that work directly with PDF documents

The “Document” demo covers PDF operations that allow a developer to re-render PDF

pages. This section focuses on creating a “snapshot” or bitmap image file from a PDF page.

Please note that the relevant parts of “Document.cpp” are nearly identical to “Menu.cpp”,

except that the menu names differ. In the interest of clarity, the similarities between menu

callbacks are illustrated below.

“Menu” Project “Document” Project

void OnClick void ExternalWindowExecuteProcProc

BOOL IsCheck BOOL ExternalWindowComputeMarkedProc

BOOL IsEnable BOOL ExternalWindowComputeEnabledProc

This section is covers the “Document->External Window->Render to Bitmap” menu

option.

The “External Window” and “Render to Bitmap” options are only enabled after a document is opened.

When the ExternalWindowExecuteProcProc callback is fired, a Plugin SDK API function is

invoked to fetch the open document information from Foxit Reader/PhantomPDF.

FR_Document frDoc = FRAppGetActiveDocOfPDDoc();

FPD_Document pdfDoc = FRDocGetPDDoc(frDoc);

Once the document information is retrieved, the callback launches a modal dialog. This

modal dialog is a standard MFC dialog class that is described in “CDisplayPDFDlg.cpp”. The

dialog class re-renders the PDF in the modal dialog window and allows the user to perform

standard reading actions, much like a “mini” Reader/PhantomPDF. The function we are

interested in is saving a bitmap image of the current PDF page. This function is presented

to the user as a single button that is mapped to an event handler through the message

map. The event handler OnButtonRenderToBMP then calls RenderPDFToBitmap. The

RenderPDFToBitmap function contains application logic that is common to many operations

that can be done to PDF documents using the Plugin SDK. Here’s a summary of the steps

found in that function,

1. Create a memory bitmap (type: FS_DIBitmap) and associate it with a device context.

2. Set up definitions (read: pointers) needed for document operations. This includes

things like FPD_Page and FPD_AnnotList.

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 15

3. Retrieve memory locations into previously defined pointers using Foxit Plugin SDK

functions like FPD_DocGetPage.

4. Render the page and annotations to the previously defined device context with

FPDRenderContextRender. Note that this function fills the memory bitmap associated

with the device context.

5. Pass the now filled memory bitmap to the SaveAsBmp function.

Any PDF operations other than rendering can replace step 5, but will require repeating

steps 1-4 at a later time to reflect document changes.

The FS_DIBitmap is a typedef for a standard Device Independent Bitmap. The SaveAsBmp

function uses MFC and Windows standard methods to retrieve the size of the

BITMAPINFOHEADER and BITMAPFILEHEADER. These values, which are a part of the DIB, are

packaged along with the image data stream into a *.BMP file. The resulting output is a

“snapshot” of the current PDF page.

Other PDF document operations can be implemented in a similar fashion, repeating steps 1

through 4 for proper operations. For a complete listing of all available public application

and document callbacks, please see the fr_appExpT.h, fpd_docExpT.h, and

fpd_renderExpT.h files.

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 16

Plugin Basics

Methods Every Plugin Must Have

A plugin must contain a source file that defines the following methods:

Method Runtime Functionality

PlugInMain Main entry point for the plugin.

PISetupSDK Called by the host application to set up the plugin's SDK-provided

functionality.

PIHandshake This routine provides the initial interface between a plugin and the

application. It also provides the callback functions to the application that

allow it to register the plugin with the application environment.

PIExportHFTs An extension HFT allows plugins to invoke methods that belong to other

plugins. After Foxit Reader/PhantomPDF finishes handshaking with all of

the plugins, it invokes each plugin’s PIExportHFT callback procedure.

Extension HFTs are created and added in the PIExportHFT procedure.

Once the extension HFT is added to the extension HFT manager, its

methods are available to other plugins. (see Extension HFTs for more

information).

This callback should only be used for exporting an extension HFT. It

should not be used to invoke other Foxit Reader/PhantomPDF Core API

methods.

PIImportReplaceAndRegister This function allows you to,

Import extension HFTs.

Replace functions in existing HFTs.

Register to receive notification events.

PIInit This is the main initialization method where plugins execute steps to hook

into Foxit Reader/PhantomPDF’s user interface. This allows the developer

to customize the user interface (e.g. add menu items, toolbar buttons,

windows, etc). It is also possible to modify Foxit Reader/PhantomPDF’s

user interface while the plugin is running.

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 17

These methods are invoked when Foxit Reader/PhantomPDF attempts to load a plugin.

Please refer to “Starter.cpp” in the “Starter” sample project for an example source file that

defines all of these methods. The core plugin functionality is defined in the PIInit method.

It is inside PIInit that Core API or extension API function calls can be made.

Plugin Loading

When Foxit Reader/PhantomPDF starts, it scans this directory for plugins and loads them.

Foxit Reader/PhantomPDF plugins must be placed in the following directory,

\Program Files\Foxit Software\Foxit Reader\plugins

Foxit Reader/PhantomPDF must be restarted in order for the plug-ins to take effect.

The PlugInMain method invokes four other methods during plugin initialization,

PISetupSDK

PIHandshake

PIExportHFTs

PIInit

If any of these steps fail or Foxit Reader/PhantomPDF exits, the PIUnload routine is

invoked. Memory used by the plugin can be de-allocated in PIUnload.

Handshaking

During the plugin initialization, the PIHandshake routine is invoked to perform a handshake

with the host application. Handshaking does four things:

 Complete exporting extension HFTs that can be invoked by other plugins.

 Import extension HFTs

 Invoke all of the HFTs.

 Free allocated memory.

These four methods must be implemented for the handshake process:

FS_BOOL PIExportHFTs (void);

FS_BOOL PIImportReplaceAndRegister(void);

FS_BOOL PIInit (void);

FS_BOOL PIUnload (void);

If any of these methods are not implemented, PIHandshake will return false and Foxit

Reader/PhantomPDF will fail to load the plugin.

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 18

Host Function Tables (HFT)

A Host Function Table (HFT) is a mechanism for managing the Core API methods. It is

implemented as a pointer array that stores the addresses of Core API methods. The

methods are grouped together based on the types of objects they are associated with.

Each group of methods has a specific HFT for performing actions on a specific object type.

All of these HFTs are managed by the Core HFT manager. The manager indexes the HFTs

by category. Foxit Reader/PhantomPDF consists of numerous internal HFTs that provide

plugins with an efficient way to invoke their methods. Here is a high level summary of the

HFT API method search algorithm,

1. The Core HFT Manager uses a category selector to locate the specific HFT.

2. The manager then uses the method selector to locate the specific method.

In addition to invoking Core API methods, extension HFTs can be created for individual

plugins. Extension HFTs allow the methods of a specific plugin to be accessible to all other

plugins. The following is a diagram of the HFT mechanism.

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 19

Global Core HFT Manager

User-defined plugins must contain a global Core HFT Manager pointer. If this pointer is not

defined, the plugin will fail to compile. This pointer is defined in the PISetupSDK method.

PISetupSDK is called by the host application to initialize the plugin.

/*Core HFT Manager.*/

FRCoreHFTMgr *_gpCoreHFTMgr = NULL;

 FS_BOOL PISetupSDK(FS_INT32 handshakeVersion, void *sdkData)

{

if(handshakeVersion != HANDSHAKE_V0100) return FALSE;

PISDKData_V0100 *pSDKData = (PISDKData_V0100*)sdkData;

/* Points to core HFT manage from Foxit Reader/PhantomPDF */

 _gpCoreHFTMgr = pSDKData->PISDGetCoreHFT();

/* Set the plugin's handshake routine, which is called next by the host

application */

 pSDKData->PISDSetHandshakeProc(sdkData, &PIHandshake);

 return TRUE;

}

Extension HFTs

Extension HFTs are mechanisms that allow plugins to invoke other plugins. The invoked

plugin must create its own extension HFT. This section will cover extension HFTs in more

detail. To make a plugins’ set of methods accessible to other plugins, an extension HFT

should be created to manage these methods. Create the extension HFT by invoking,

FSExtensionHFTMgrNewHFT

Add the new extension HFT to the host environment by invoking,

FSExtensionHFTMgrAddHFT

The following steps show the entire process. Steps 2 through 4 must be implemented in

the plugin basic routine PIExportHFTs.

1. Define a group of methods.

void Function1();

void Function2();

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 20

2. Create a new extension HFT

 FS_HFT extensionHFT = FSExtensionHFTMgrNewHFT(2);

 // In step 1, we defined 2 methods, so the value “2” is passed to the function

 // to indicate the capacity of the new HFT.

3. Add the HFT to the host environment.

FSExtensionHFTMgrAddHFT(“name”, VERSION, extensionHFT);

4. Add the address of the methods to the extension HFT.

FSExtensionHFTMgrReplaceEntry(extensionHFT, 0, &Function1);

FSExtensionHFTMgrReplaceEntry(extensionHFT, 1, &Function2);

5. From another plugin, you can access the method and invoke it in the

PIImportReplaceAndRegister routine.

typedef void (*FunctionPROTO)();

extensionHFT = FSExtensionHFTMgrGetHFT(“name”, VERSION);

 FunctionPROTO pFunction1 = FSExtensionHFTMgrGetEntry(extensionHFT, 0);

pFunction1();

For a detailed example, please refer to the sample project “Extension HFT”. In this sample

project, the methodsTmpl.h header file is a template that describes groups of methods. It

is used to generate the method selector that manages the indices of the methods. It also

generates the method prototypes.

The methodsCall.h header file contains examples of how to,

 Generate a method selector.

 Generate prototypes for the plugin methods.

Notice that the methods are defined as macros making it easier for other plugins to invoke

them. Here are the steps for referencing these macros from other plugins,

 Include the methodsCalls.h header file.

 Invoke the FSExtensionHFTMgrGetHFT to get the HFT by name.

 Reference the macros defined in methodCalls.h

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 21

Header Files

Foxit PhantomPDF Plug-in SDK header files must be included in your plugin project. You

can find the header files in the following directory:

Foxit PhantomPDF Plug-in SDK\PluginSupport\Headers

The following table lists the SDK header files and gives a simple description. In

general, including fr_callsInclude.h and fs_pidata.h header files is enough.

Header file Description

fr_callsInclude.h Includes all the xxxCalls.h header files, which define names for

referencing Foxit Reader/PhantomPDF Core APIs via the

corresponding HFTs. Include this file in your plugin.

fr_common.h Defines Foxit Reader/PhantomPDF SDK version, core HFT

manager which manages referencing Foxit Reader/PhantomPDF

Core APIs.

fs_pidata.h Defines data structure, types, and other things, which are used

to build a handshake routine. This file is shared between Foxit

Reader/PhantomPDF and plugins.

xxxExpt.h Contains Types, macros, and structures that are required to use

the Host Function Tables.

xxxCalls.h Defines names for referencing Foxit Reader/PhantomPDF Core

APIs via the corresponding HFTs

xxxTempl.h Catalogs of functions exported.

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 22

Core API Terminology

Objects

All the Core API objects are defined as a pointer that represents an internal real object.

Objects are obtained by Core API methods. Internal objects are opaque so objects’ data

cannot be directly accessed. Manipulation of objects is achieved by calling corresponding

Core API methods. Objects are passed by reference (vs. passed by value).

Objects names are typically defined in the following structure:

<layer>_<name> (Example: FPD_Document)

Layer: identifies the Core API layer (FPD = Foxit Portable Document layer)

Name: object’s name.

Methods

Most Core API method names are typically defined in the following structure:

<layer><object><action><thing> (example: FPDDocGetUserPermissions)

layer: identifies the Core API layer (FPD = Foxit Portable Document layer)

object: identifies the object upon which the method acts (Doc)

action: specifies an action that the method performs (Get)

thing: specific to each method. (UserPermissions) May not always be present.

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 23

Additional Demos

This section provides a detailed introduction to plugin development involving these Foxit

Reader/PhantomPDF components,

 menus

 toolbars

 documents

 navigation panels

 event notifications

It describes the individual objects that make up each of these components and the API

methods that are available for modifying them. Some of the material is an expanded

explanation of topics discussed in the “Hello World” Plugin section. The Core API provides a

number of structures and functions for accessing the Foxit Reader/PhantomPDF

components and their individual objects (see the Foxit Reader/PhantomPDF PDF API

Reference for a complete list).

Menus

Menu Objects

menu bar

menu

menu item

sub-menu

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 24

The table below lists the API structures and functions that are used to access the menu

objects in the picture above.

Structure Menu Object

FR_MenuBar Represents the Foxit Reader/PhantomPDF menu bar. Invoke FRAppGetMenuBar to

access the individual objects within the menu bar.

FR_Menu Represents the individual menus contained within the menu bar. Invoke

FRMenuBarGetMenuByIndex to gain access to an existing menu. To create a new

menu, invoke the FRMenuNew function and add it to the menu bar.

FR_MenuItem Represents the menu items within a menu. Menu items can also function as separators

that partition other menu items. Sub-menu items are considered FR_Menu structures.

Menu Item Callback Functions

When creating a custom menu item with the Foxit Reader/PhantomPDF Core API, the

developer must also implement the application logic in the menu item callback function. A

menu item can invoke three different callback functions through the Core API,

typedef void (*FRExecuteProc)(void *clientData);

typedef FS_BOOL (*FRComputeEnabledProc)(void *clientData);

typedef FS_BOOL (*FRComputeMarkedProc)(void *clientData);

When a menu item is selected, the FRExecuteProc callback is invoked. It is the developer’s

responsibility to implement application logic for this callback function.

The developer can control whether a menu item is enabled by implementing the

FRComputeEnabledProc callback. Set this callback function to return true to enable the

menu item and false to disable it.

For menu items that have check marks associated with them, the developer can control

whether it is checked by implementing the FRComputeMarkedProc callback. Set this

callback function to return true to check the menu item and false to uncheck it.

Menu Sample Project

The “Menu” sample project is a working example of the steps covered in the following

sections. Please refer to it for additional information.

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 25

How to Add a Menu Item to an Existing Menu

1. Get the Foxit Reader/PhantomPDF menu bar.

FR_MenuBar menuBar = FRAppGetMenuBar();

2. Get the last menu in the menu bar.

int nCount = FRMenuBarGetMenuCount(menuBar);

FR_Menu menu = FRMenuBarGetMenuByIndex(menuBar, nCount - 1);

3. Get the menu item icon.

FS_DIBitmap bitmap = GetBmpFromRes(IDR_SAYHELLOICON);

4. Create a new menu item.

FR_MenuItem menuItem = FRMenuItemNew("Say Hello", L"Say Hello",

 bitmap, false, NULL);

5. Set the tool tip to the menu item.

FRMenuItemSetToolTip(menuItem, L"Say Hello Tooltip");

6. Set the description to the menu item.

FRMenuItemSetDescribeText(menuItem, L"Say Hello Description");

7. Set the execute callback to the menu item.

FRMenuItemSetExecutePro(menuItem, &OnClick);

8. Set the compute-enabled callback to the menu item.

FRMenuItemSetComputeEnabledPro(menuItem, &IsEnable);

9. Set the compute-marked callback to the menu item.

FRMenuItemSetComputeMarkedProc(menuItem, &IsCheck);

10. Add the new menu item to the end of the menu.

int nMenuItemCount = FRMenuGetMenuItemCount(menu);

FRMenuAddMenuItem(menu, menuItem, nMenuItemCount);

How to Add a New Menu to the Menu Bar

1. Get the Foxit Reader/PhantomPDF menu bar.

FR_MenuBar menuBar = FRAppGetMenuBar();

2. Create a new menu.

FR_Menu menu = FRMenuNew(NULL);

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 26

3. Add a menu to the end of the menu bar.

int nCount = FRMenuBarGetMenuCount(menuBar);

FRMenuBarAddMenu(menuBar, menu, L"new menu", "new menu", nCount);

How to Get the Name Associated to Menu Item

All the menus and menu items of Foxit Reader/PhantomPDF use a name attribute as their

unique identifier. To get the name of a specified menu item, you should retrieve all the

menus or all the menu items if needed.

The following code is an example:

// Retrieve the menu bar in Foxit Reader/PhantomPDF

FR_MenuBar menuBar = FRAppGetMenuBar();

if(NULL == menuBar) return;

// Retrieve all the menus in menu bar

FS_INT32 nMenu = FRMenuBarGetMenuCount();

for(FS_INT32 i=0; i<nMenu; i++)

{

 FR_Menu menu = FRMenuBarGetMenuByIndex(menuBar, i);

 FR_MenuItem menuItem = FRMenuGetParentMenuItem(menu);

 FS_ByteString bsMenuName = FSByteStringNew();

 FRMenuItemGetName(menuItem, &bsMenuName);

 //Now, you get the menu name, save it if it is you want.

 ...

 ...

 //end save

 FSByteStringDestroy(bsMenuName);

// Retrieve all the menu items of the menu

 FS_INT32 nItem = FRMenuGetMenuItemCount(menu);

 for(FS_INT32 n=0; n<nItem; n++)

 {

 FR_MenuItem mItem = FRMenuGetMenuItemByIndex(menu, n);

 FS_ByteString bsItemName = FSByteStringNew();

 FRMenuItemGetName(nItem, &bsItemName);

 //Now, you get the menuItem name, save it if need.

 ...

 ...

 //end save

 FSByteStringDestroy(bsItemName);

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 27

 // Retrieve all the submenu items of the menu item

 FR_Menu subMenu = FRMenuItemGetSubMenu(mItem);

 if(NULL != subMenu)

 {

 //continue looking up

 }

 }

}

Tool Bar

Tool Bar Objects

File tool bar

Basic tool bar

The table below lists the API objects and functions that are used to access the tool bar

objects in the picture above.

Structure Tool Bar Object

FR_ToolBar Represents a Foxit Reader/PhantomPDF tool bar. Use FRAppGetToolBarByName or

FRAppGetToolBarByIndex to access specific tool bars. Use FRToolBarNew to

create a new tool bar.

FR_ToolButton Represents the individual buttons that make up a tool bar. Buttons can also function as

separators that partition other buttons. Buttons have many attributes that can be set

through the API (e.g. name, sub-menu, icon, callback function, etc).

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 28

Tool Button Callback Functions

Similar to custom menu items, tool bar buttons require the developer to implement the

application logic in the tool bar button callback function. A tool bar button can invoke three

different callback functions through the Core API,

typedef FS_BOOL (*FRExecuteProc)(void *clientData);

typedef void (*FRComputeEnabledProc)(void *clientData);

typedef FS_BOOL (*FRComputeMarkedProc)(void *clientData);

When a user clicks on a tool button, the FRExecuteProc callback is invoked. It is the

developer’s responsibility to implement application logic for this callback function.

The developer can control whether a tool button is enabled by implementing the

FRComputeEnabledProc callback. Set this callback function to return true to enable the

menu item and false to disable it.

For tool buttons that have check marks associated with them, the developer can control

whether it is checked by implementing the FRComputeMarkedProc callback. Set this

callback function to return true to check the menu item and false to uncheck it.

Toolbar Sample Project

The “Toolbar” sample project is a working example of the steps covered in the following

section. Please refer to it for additional information.

How to Create a New Tool Bar

This section covers how to create a new tool bar and add a new button to the tool bar.

1. Create a new tool bar.

FR_ToolBar toolBar = FRToolBarNew("new tool bar", L"new tool bar", FALSE);

2. Create a new tool button.

FR_ToolButton toolButton = FRToolButtonNew("new tool button", FALSE);

3. Get the tool button icon.

FS_DIBitmap bitmap = GetBmpFromRes(IDR_PDF_TOOLBUTTON);

4. Set the icon to the tool button.

FRToolButtonSetIcon(toolButton, bitmap, NULL);

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 29

5. Set callbacks to the tool button.

FRToolButtonSetExcuteProc(toolButton, &OnClick);

FRToolButtonSetEnableProc(toolButton, &IsEnable);

FRToolButtonSetCheckProc(toolButton, &IsCheck);

6. Add the tool button to the tool bar.

FRToolBarAddButton(toolBar, toolButton);

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 30

Documents

This section will cover the main document structures provided by the Core API for

manipulating PDF documents.

PDF Document Model

Structure Description

FPD_Document Primary document structure that represents the objects that make up a PDF

document. Provides access to all of the objects contained within a PDF (e.g. tree of

pages, trees of bookmarks, articles, information and security dictionaries, etc). These

objects can be accessed through the FPD layer of the Core API.

FPD_Page Provides access to a tree of pages.

FPDDocGetPage Provides access to PDF pages within a document.

FPDDocGetInfo Provides access to information dictionaries within a document.

PDF Document View

Structure Description

FR_Document Primary document structure that represents the view of a PDF document. The view is

responsible for storing state information as changes are made to the document.

Here are a few examples of state information that is handled by the PDF document

view,

 Current page that is on display.

 Current zoom level setting.

 Enable or disable the Save button depending on whether the contents of a

document were modified.

Document Sample Project

The "Document” sample project shows how a PDF document can be manipulated (e.g.

zoom in, zoom out, rotate clockwise, and rotate counterclockwise) using the FR_Document

view structure. It also provides an example of using the FPD_Document structure to open a

PDF document in an external window. The sample also includes a button for rendering a

PDF document to a bitmap.

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 31

Display a PDF document in an external window using the “Document” sample plugin.

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 32

Event Notifications

Plugins can register to receive notifications when events occur in Foxit

Reader/PhantomPDF. The plug-in must provide a callback function for the notification.

Callback functions are invoked by Foxit Reader/PhantomPDF when the corresponding

event occurs. Developers can add custom application logic in the callback function to

control how the event is handled. The Core API provides a number of functions for

registering to receive event notifications. For example,

FRAppRegisterPreferencePageHandler

RegisterNavPanelView

RegisterAppEventHandler

RegisterDocHandlerOfPDDoc

The header file fr_appCalls.h contains a complete list of registration functions. Please

refer to the “Event Notification” sample project for additional information.

Navigation Panel

Navigation Panel Objects

Navigation Panel

 Panel View

 Button of Panel Page

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 33

Navigation Panel View Sample Project

Plugins can receive notifications when panel events occur (e.g. the activation of panel view,

the rotation of a page view, etc). Panel events invoke callback functions that execute

application logic to perform a specific action. Developers can register for event

notifications by adding custom application logic to these callback functions.

The “Navigation Panel View” sample project covers how to create a navigation panel view

and shows how panel view event notifications should be handled.

Here is a high level outline of the application logic for the project,

1. Define the callback functions that will be invoked by Foxit Reader/PhantomPDF when a

panel view events occur.

2. Define a record that contains the addresses of all panel view event callback functions.

3. Register to receive notifications of (navigation panel view) events when they occur. As

long as there are plugins that are registered to receive notifications from callbacks stored

in a particular record, that record cannot be de-allocated. Registration is done in the

PIInit routine by invoking FRAppRegisterNavPanelView.

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 34

Enabling a Foxit

Reader/PhantomPDF Plug-in

This section provides a detailed introduction to enabling a plug-in in Foxit

Reader/PhantomPDF. The plug-in must be certified if it needs to invoke the restricted

interfaces that perform editing functions.

Applying for Digital Certificate

To certify a plug-in, apply for a digital certificate.

To apply for a digital certificate, perform the steps as follows:

1. Finish development of the plug-in.

2. The plug-in must meet the criteria established by the Foxit Reader/PhantomPDF

Integration Key Licensing Aggrement. Fill out agreement and send it to

support@foxitsoftware.com. There is a fee involved. More information can be found at

http://www.foxitsoftware.com.

Once agreement is approved, you will receive a contract package that includes

information that is unique to you.

3. Create the public/private key pair file using the KeyGen tool provided in the Foxit

PhantomPDF Plug-in SDK.

4. Open the key pair file and extract the public key, then send the public key to

support@foxitsoftware.com. The public key will be used to generate a certificate that

will be sent back to you. Using the certificate, the plug-ins which meet the criteria

established by the Foxit Reader/PhantomPDF Integration Key Licensing Agreement can

be enabled.

5. The received digital certificate must be added to the plug-ins. This is covered in the

following section.

Note: If you want to release the plug-in for Foxit Reader, step 3 and 4 must be ignored.

You will receive the digital certificate in step 2.

mailto:support@foxitsoftware.com
http://www.foxitsoftware.com/
mailto:support@foxitsoftware.com

Foxit PhantomPDF Plug-in SDK
Developing Plugins

 35

Certifying a Plug-in

Perform the following steps to certify a plug-in:

1. After receiving the digital certificate, open the dummy.rc file and the resource file of

the plug-in project in a text editor. Copy the content of dummy.rc to the resource

portion of your plug-in.

2. Place the digital certificate in the directory “Plug-in Project/res”.

3. Rebuild your plug-in. The plug-in will be created with the digital certificate and dummy

digest data, which will be replaced with real data in the next step.

4. Run PISignatureGen.exe. Input the path to the plug-in and the path to the key pair file

generated above. Click on the “Generate Now” button to sign the plug-in.

Now, the plug-in can be loaded by Foxit Reader/PhantomPDF. Step 4 must be repeated

each time the plug-in is rebuilt.

Note: If you want to release the plug-in for Foxit Reader, step 4 must be ignored. Instead,

you must send the plug-in to support@foxitsoftware.com. Foxit Corporation will sign the

plug-in for you and send it back to you.

mailto:support@foxitsoftware.com

	Prerequisites
	Developer Audience
	Supported Environments
	MFC

	Additional Documentation

	Overview
	Purpose
	What can Foxit Reader/PhantomPDF Plugins do?
	Customize the Foxit Reader/PhantomPDF User Interface
	Manipulate PDF Documents

	Plugin Architecture
	Foxit Reader/PhantomPDF Core API
	Foxit Reader/PhantomPDF Layer
	Foxit Portable Document Layer
	Foxit Support layer

	“Hello World” Plugin
	Visual Studio Project Settings
	Compilation Errors with IDEs Older than Visual C++ 6.0

	Getting Started with the Demo Projects
	Adding Menu Options to the Demo
	Menus that work directly with PDF documents

	Plugin Basics
	Methods Every Plugin Must Have
	Plugin Loading
	Handshaking
	Host Function Tables (HFT)
	Global Core HFT Manager

	Extension HFTs
	Header Files
	Core API Terminology
	Objects
	Methods

	Additional Demos
	Menus
	Menu Objects
	Menu Item Callback Functions
	Menu Sample Project
	How to Add a Menu Item to an Existing Menu
	How to Add a New Menu to the Menu Bar
	How to Get the Name Associated to Menu Item

	Tool Bar
	Tool Bar Objects
	Tool Button Callback Functions
	Toolbar Sample Project
	How to Create a New Tool Bar

	Documents
	PDF Document Model
	PDF Document View
	Document Sample Project

	Event Notifications
	Navigation Panel
	Navigation Panel Objects
	Navigation Panel View Sample Project

	Enabling a Foxit Reader/PhantomPDF Plug-in
	Applying for Digital Certificate
	Certifying a Plug-in

